Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(17): e202303580, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38179818

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.

2.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792362

RESUMEN

The cochlear nuclei (CNs) receive sensory information from the ear and perform fundamental computations before relaying this information to higher processing centers. These computations are performed by distinct types of neurons interconnected in circuits dedicated to the specialized roles of the auditory system. In the present study, we explored the use of voltage imaging to investigate CN circuitry. We tested two approaches based on fundamentally different voltage sensing technologies. Using a voltage-sensitive dye we recorded glutamate receptor-independent signals arising predominantly from axons. The mean conduction velocity of these fibers of 0.27 m/s was rapid but in range with other unmyelinated axons. We then used a genetically-encoded hybrid voltage sensor (hVOS) to image voltage from a specific population of neurons. Probe expression was controlled using Cre recombinase linked to c-fos activation. This activity-induced gene enabled targeting of neurons that are activated when a mouse hears a pure 15-kHz tone. In CN slices from these animals auditory nerve fiber stimulation elicited a glutamate receptor-dependent depolarization in hVOS probe-labeled neurons. These cells resided within a band corresponding to an isofrequency lamina, and responded with a high degree of synchrony. In contrast to the axonal origin of voltage-sensitive dye signals, hVOS signals represent predominantly postsynaptic responses. The introduction of voltage imaging to the CN creates the opportunity to investigate auditory processing circuitry in populations of neurons targeted on the basis of their genetic identity and their roles in sensory processing.


Asunto(s)
Núcleo Coclear , Ratones , Animales , Neuronas/fisiología , Axones/fisiología , Percepción Auditiva , Audición , Vías Auditivas/fisiología
3.
Chemistry ; 29(26): e202300028, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807423

RESUMEN

Two ionic hydrogen-bonded organic frameworks (iHOF-10, iHOF-11) were prepared using 1,1'-diamino-4,4'-bipyridine diiodide (Dbpy ⋅ 2I) and tetrakis(4-sulfophenyl)ethylene (H4 TPE). With increasing RH and temperature, water molecules induce single crystal to single crystal (SCSC) transformation of iHOF-10, resulting in the formation of iHOF-11. At 90 °C, 98 % RH, the proton conductivity of iHOF-11 (7.03×10-3  S cm-1 ) is 2.09 times higher than iHOF-10 (3.37×10-3  S cm-1 ). At 50 °C, 98 % RH, iHOF-11 (9.49×10-4  S cm-1 ) is 19.06 times higher than iHOF-10 (4.98×10-5  S cm-1 ). The proton conductivity shows water molecules enter the crystal and induce crystal transformation and reorganization of the hydrogen bonding structure, thus increasing the proton conductivity and stability.

4.
World J Psychiatry ; 12(10): 1287-1297, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36389087

RESUMEN

Artificial intelligence-based technologies are gradually being applied to psych-iatric research and practice. This paper reviews the primary literature concerning artificial intelligence-assisted psychosis risk screening in adolescents. In terms of the practice of psychosis risk screening, the application of two artificial intelligence-assisted screening methods, chatbot and large-scale social media data analysis, is summarized in detail. Regarding the challenges of psychiatric risk screening, ethical issues constitute the first challenge of psychiatric risk screening through artificial intelligence, which must comply with the four biomedical ethical principles of respect for autonomy, nonmaleficence, beneficence and impartiality such that the development of artificial intelligence can meet the moral and ethical requirements of human beings. By reviewing the pertinent literature concerning current artificial intelligence-assisted adolescent psychosis risk screens, we propose that assuming they meet ethical requirements, there are three directions worth considering in the future development of artificial intelligence-assisted psychosis risk screening in adolescents as follows: nonperceptual real-time artificial intelligence-assisted screening, further reducing the cost of artificial intelligence-assisted screening, and improving the ease of use of artificial intelligence-assisted screening techniques and tools.

5.
BMC Infect Dis ; 20(1): 389, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487026

RESUMEN

BACKGROUND: Intracranial infections with Corynebacterium striatum (C. striatum) have been described sporadically in the literature over the last two decades. However, C. striatum meningitis combined with multiple abscesses has not been published before. CASE PRESENTATION: In this report, we describe the clinical and imaging findings in a 54-year-old woman with meningitis caused by C. striatum and combined with suspected brain and lung abscesses. This patient who underwent multiple fractures and a recent cut presented with headache and paraphasia. C. striatum was isolated in cerebrospinal fluid and supposedly transmitted from the skin purulent wound through blood. The patient was treated with intravenous vancomycin and had a transient improvement, but died finally. Multiple abscesses, especially in the brain, could be a reason to explain her conditions were deteriorating rapidly. CONCLUSIONS: Note that C. striatum can cause life-threatening infections. Early identification and diagnosis, early administration of antibiotics to which the bacterium is susceptible, and treatment of complications will be beneficial in patients with C. striatum-related infection.


Asunto(s)
Absceso Encefálico/microbiología , Infecciones por Corynebacterium/complicaciones , Absceso Pulmonar/microbiología , Meningitis Bacterianas/microbiología , Antibacterianos/uso terapéutico , Absceso Encefálico/diagnóstico por imagen , Absceso Encefálico/tratamiento farmacológico , Líquido Cefalorraquídeo/microbiología , Corynebacterium/aislamiento & purificación , Corynebacterium/patogenicidad , Infecciones por Corynebacterium/tratamiento farmacológico , Femenino , Humanos , Traumatismos de la Pierna/microbiología , Absceso Pulmonar/diagnóstico por imagen , Absceso Pulmonar/tratamiento farmacológico , Meningitis Bacterianas/complicaciones , Meningitis Bacterianas/tratamiento farmacológico , Persona de Mediana Edad , Vancomicina/uso terapéutico
6.
J Neurosci ; 39(31): 6095-6107, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31160538

RESUMEN

T-stellate cells in the ventral cochlear nucleus (VCN) form an ascending pathway that conveys spectral information from the cochlea to brainstem nuclei, the inferior colliculi, and the thalamus. The tonotopic array of T-stellate cells enhances the encoding of spectral peaks relative to their auditory nerve fiber inputs. The alignment of local collaterals and T-stellate cell dendrites within the isofrequency lamina suggests that the cells make connections within the isofrequency lamina in which they reside. Recordings from pairs of T-stellate cells in mice of both sexes revealed that firing in the presynaptic cell evoked responses in the postsynaptic cell when presynaptic firing was paired with depolarization of the postsynaptic cell. After such experimental coactivation, presynaptic firing evoked EPSCs of uniform amplitude whose frequency depended on the duration of depolarization and diminished over minutes. Nitric oxide (NO) donors evoked EPSCs in T-stellate cells but not in the other types of principal cells. Blockers of neuronal nitric oxide synthase (nNOS) and of NMDA receptors blocked potentiation, indicating that NO mediates potentiation. nNOS and its receptor, guanylate cyclase (NO-GC), are expressed in somata of T-stellate cells. Excitatory interconnections were bidirectional and polysynaptic, indicating that T-stellate cells connect in networks. Positive feedback provided by temporarily potentiated interconnections between T-stellate cells could enhance the gain of auditory nerve excitation in proportion to the excitation, generating a form of short-term central gain control that could account for the ability of T-stellate cells to enhance the encoding of spectral peaks.SIGNIFICANCE STATEMENT T-stellate cells are interconnected through synapses that have a previously undescribed form of temporary, nitric oxide-mediated plasticity. Coactivation of neighboring cells enhances the activation of an excitatory network that feeds back on itself by enhancing the probability of EPSCs. Although there remain gaps in our understanding of how the interconnections revealed in slices contribute to hearing, our findings have interesting implications. Positive feedback through a network of interconnections could account for how T-stellate cells are able to encode spectral peaks over a wider range of intensities than many of their auditory nerve inputs (Blackburn and Sachs, 1990; May et al., 1998). The magnitude of the gain may itself be plastic because neuronal nitric oxide synthase increases when animals have tinnitus (Coomber et al., 2015).


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Núcleo Coclear/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Animales , Femenino , Masculino , Ratones
7.
Biochem Biophys Res Commun ; 503(3): 1356-1363, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007438

RESUMEN

High-fat diet (HFD) is known to promote atherosclerosis which accelerates the development of atherosclerotic cardiovascular diseases. Vascular dysfunction characterized by inflammation and lipid accumulation is common in atherosclerosis caused by HFD. The specific effects of HFD on blood vessels and the underlying mechanisms need to be further clarified. Toll-like receptor 4 (TLR4) is a key contributing factor in atherosclerosis and TLR4 deficiency protects vascular smooth muscle cells against inflammatory responses and lipid accumulation in vitro. However, the physiological significance of TLR4 signaling in HFD-induced changes is unknown. In this study, we observed that HFD feeding increased body weight, circulating inflammatory cytokines and lipid accumulation in the aorta of wild-type mice but apart from increasing body weight, did not affect the TLR4 knockout mice. TLR4 expression increased significantly in the arterial walls after receiving HFD treatment, while that of the co-localizing PPARγ and ABCG1 markedly decreased. TLR4 deficiency reversed the HFD-induced attenuation of PPARγ and ABCG1. In conclusion, TLR4 mediates HFD induced increase in body weight, inflammation and aortic lipid accumulation through, at least partly, the PPARγ/ABCG1 signaling pathway. Therefore, interfering with TLR4 signaling is a viable therapeutic option in diet induced atherosclerosis.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Músculo Liso Vascular/metabolismo , PPAR gamma/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Inflamación/patología , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Transducción de Señal , Receptor Toll-Like 4/deficiencia
8.
Trends Neurosci ; 40(10): 613-624, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28867348

RESUMEN

In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.


Asunto(s)
Vías Auditivas/citología , Vías Auditivas/fisiología , Neuronas/citología , Neuronas/fisiología , Localización de Sonidos/fisiología , Animales , Humanos
9.
Hear Res ; 345: 57-68, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28065805

RESUMEN

Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh.


Asunto(s)
Vías Auditivas/metabolismo , Núcleo Coclear/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canal de Potasio Kv.1.1/genética , Potenciales de la Membrana , Canales de Potasio/genética , Animales , Vías Auditivas/citología , Vías Auditivas/efectos de los fármacos , Núcleo Coclear/citología , Núcleo Coclear/efectos de los fármacos , Regulación de la Expresión Génica , Genotipo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/deficiencia , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/deficiencia , Potenciales de la Membrana/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Plasticidad Neuronal , Técnicas de Placa-Clamp , Fenotipo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/deficiencia , Factores de Tiempo
10.
Mol Biol Rep ; 42(1): 179-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25249228

RESUMEN

Foam cell formation is the hallmark of atherosclerosis. Both telmisartan and autophagy protect against the development of atherosclerosis. However, it has yet to be elucidated whether telmisartan prevents vascular smooth muscle cell (VSMC)-derived foam cell formation. Vascular smooth muscle cells isolated from the thoracic aorta of male C57BL/6J mice were used for this study. To induce foam cell formation, primary VSMCs were incubated in 80 µg/ml oxLDL for 24 h. LC3, beclin-1, PPARγ, AMPK, p-AMPK, mTOR and p-mTOR expression were determined via Western blot. Lipid accumulation was evaluated via oil red O staining and intracellular total cholesterol level measurement. Our study demonstrated that telmisartan dose-dependently increased the expression of beclin-1, the LC3II/LC3I ratio and the quantity of GFP-labeled autophagosomes, displaying a peak effect at 10 µM. In control siRNA-transfected VSMCs, telmisartan (10 µM) decreased lipid droplet accumulation and the total cholesterol level significantly. In contrast, in Atg7 siRNA-transfected VSMCs, telmisartan failed to attenuate lipid accumulation. In addition, telmisartan dose-dependently increased the expression of PPARγ and p-AMPK and decreased the expression of p-mTOR. GW9662 attenuated the telmisartan-induced increase in PPARγ expression, the LC3-II/LC3-I ratio and p-AMPK expression and the telmisartan-induced decrease in p-mTOR expression. Compound C restored mTOR activity and abolished the increase in the LC3-II/LC3-I ratio. Rapamycin significantly reduced p-mTOR expression and increased the LC3-II/LC3-I ratio. In conclusion, this study provides evidence that the chronic pharmacological activation of the PPARγ-mediated autophagy pathway using telmisartan may represent a promising therapeutic strategy for atherosclerosis.


Asunto(s)
Autofagia/efectos de los fármacos , Bencimidazoles/farmacología , Benzoatos/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , PPAR gamma/metabolismo , Adenilato Quinasa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Células Espumosas/citología , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Telmisartán
11.
PLoS Genet ; 10(12): e1004823, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473838

RESUMEN

Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits.


Asunto(s)
Vías Auditivas/anomalías , Tipificación del Cuerpo/genética , Nervio Coclear/anomalías , Mutación , Receptores del Factor Natriurético Atrial/genética , Potenciales de Acción , Animales , Vías Auditivas/embriología , Vías Auditivas/metabolismo , Percepción Auditiva/fisiología , Axones/fisiología , Tronco Encefálico/anomalías , Tronco Encefálico/citología , Tronco Encefálico/patología , Cóclea/anomalías , Cóclea/citología , Cóclea/patología , Nervio Coclear/embriología , Nervio Coclear/patología , Embrión de Mamíferos , Femenino , Ratones , Ratones Transgénicos , Neuronas Aferentes/fisiología , Embarazo
12.
PLoS One ; 8(8): e68842, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950878

RESUMEN

BACKGROUND: The association between aldosterone synthase (CYP11B2) C-344T gene polymorphism and ischemic stroke remains controversial and ambiguous. To better explain the association between CYP11B2 polymorphism and ischemic stroke risk, a meta-analysis was performed. METHODS: Based on comprehensive searches of Medline, Embase, Web of Science, CNKI and CBM databases, we identified and abstracted outcome data from all articles to evaluate the association between CYP11B2 polymorphism and ischemic stroke. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were performed in all genetic models. Fixed or random effects model was separately used depending on the heterogeneity between studies. Publication bias was tested by Begg's funnel plot and Egger's regression test. RESULTS: A total of 12 studies including 3,620 ischemic stroke cases and 4,090 controls were identified. There was no statistical evidence of association between CYP11B2 C-344T polymorphism and ischemic stroke in all genetic models (allelic model: OR = 1.19, 95% CI = 0.95-1.49; additive model: OR = 1.43, 95% CI = 0.91-2.27; dominant model: OR = 1.30, 95% CI = 0.89-1.89; and recessive model: OR = 1.24, 95% CI = 0.96-1.60). On subgroup analysis by ethnicity, similarly results were found in both Asians and non-Asians. For Asians, the combined ORs and 95% CIs were (allelic model: OR = 1.07, 95% CI = 0.87-1.32; additive model: OR = 1.15, 95% CI = 0.77-1.71; dominant model: OR = 1.13, 95% CI = 0.92-1.38; and recessive model: OR = 1.09, 95% CI = 0.84-1.40). For none-Asians, the combined ORs and 95% CIs were (allelic model: OR = 1.58, 95% CI = 0.90-2.76; additive model: OR = 2.37, 95% CI = 0.79-7.05; dominant model: OR = 1.79, 95% CI = 0.77-4.19; and recessive model: OR = 1.80, 95% CI = 0.96-3.36). CONCLUSION: The present meta-analysis suggested that CYP11B2 C-344T polymorphism was unlikely contribute to ischemic stroke susceptibility.


Asunto(s)
Citocromo P-450 CYP11B2/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética , Adulto , Anciano , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos
13.
PLoS One ; 8(6): e65863, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799054

RESUMEN

OBJECTIVE: Several epidemiological studies have evaluated the association between the GNB3 C825T polymorphism and hypertension or stroke. The results of these studies were inconsistent; therefore, we performed a meta-analysis to clarify these discrepancies. METHODS: We systematically searched the PubMed, Embase, Web of Science, CNKI, and CBM databases, and manually searched reference lists of relevant papers, meeting abstracts, and relevant journals. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for dominant, recessive, and allelic models. A fixed or random effects model was separately adopted depending on study heterogeneity. Subgroup and sensitivity analyses were performed to detect study heterogeneity and examine result stability, respectively. Publication bias was tested using funnel plots, the Egger's regression test, and Begg's test. RESULTS: We screened 66 studies regarding hypertension and eight concerning stroke. A combined analysis showed that only the allelic model found a marginal association with hypertension (OR = 1.07, 95% CI = 1.01-1.13) and female gender (OR = 1.11, 95% CI = 0.99-1.24). However, no comparison models found an association with stroke (allelic model: OR = 1.11, 95% CI = 0.94-1.32; dominant model: OR = 1.16, 95% CI = 0.92-1.48; and recessive model: OR = 1.05, 95% CI = 0.97-1.14). Sensitivity analysis suggested that all models did not yield a relationship to hypertension or stroke among Asians. Besides, there was a lack of statistical association with hypertension in Caucasians, which maybe due to a small sample size. When we restricted the included studies to normal populations according to the Hardy-Weinberg equilibrium, no association was found. CONCLUSIONS: There was no evidence indicating that the 825T allele or TT genotype was associated with hypertension or stroke in Asians or hypertension in Caucasians. However, further studies regarding Africans and other ethnicities are needed to identify further correlations.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/genética , Hipertensión/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética , Estudios de Casos y Controles , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos
14.
Lab Invest ; 93(8): 880-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23774581

RESUMEN

Reactive oxygen species (ROS) are associated with inflammation and vasculature dysfunction. This study aimed to investigate the potential role of the ROS on vascular Toll-like receptor 4 (TLR4)-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells (VSMCs). A wire-induced carotid injury model was used in male TLR4-deficient (TLR4(-/-)) and wild-type C57BL/6J mice to induce neointima formation. In the presence or absence of the ROS scavenger apocynin for 14 days, increased TLR4 and proinflammatory cytokines were observed in wire injury-induced carotid neointima and in platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs. The TLR4(-/-) protected the injured carotid from neointimal formation and impaired the cellular proliferation and migration in response to PDGF-BB. Apocynin attenuated intimal hyperplasia. Pre-treatment with apocynin significantly inhibited intracellular ROS generation, accompanied by a significant suppression of TLR4 and proinflammatory cytokines expression, and VSMC proliferation and migration. However, the results were not obvious in TLR4(-/-) condition. These findings highlight the importance of ROS inhibition in TLR4-mediated proinflammatory and proliferative phenotype of VSMCs, and suggest ROS as an essential therapeutic target for TLR4-associated vascular inflammation and vascular diseases.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Acetofenonas/farmacología , Animales , Becaplermina , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Hiperplasia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Neointima/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteínas Proto-Oncogénicas c-sis/farmacología
15.
J Neurophysiol ; 106(2): 630-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21562186

RESUMEN

In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.


Asunto(s)
Núcleo Coclear/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Potenciales de la Membrana/genética , Neuronas/fisiología , Canales de Potasio/fisiología , Animales , Núcleo Coclear/citología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Inhibición Neural/genética , Neuronas/clasificación , Canales de Potasio/deficiencia , Canales de Potasio/genética , Especificidad de la Especie
16.
Hear Res ; 276(1-2): 61-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21056098

RESUMEN

Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brainstem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feedforward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO.


Asunto(s)
Núcleo Coclear/citología , Núcleo Coclear/fisiología , Neuronas Aferentes/fisiología , Animales , Vías Auditivas/fisiología , Aves/fisiología , Tronco Encefálico/fisiología , Cóclea/fisiología , Nervio Coclear/fisiología , Dendritas/fisiología , Fenómenos Electrofisiológicos , Retroalimentación Fisiológica , Humanos , Inhibición Neural , Neurotransmisores/metabolismo , Núcleo Olivar/fisiología , Canales de Potasio con Entrada de Voltaje/deficiencia , Receptores de N-Metil-D-Aspartato/metabolismo , Sonido , Sinapsis/fisiología , Factores de Tiempo
17.
J Neurophysiol ; 104(5): 2308-20, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20739600

RESUMEN

Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.


Asunto(s)
Vías Auditivas/fisiología , Nervio Coclear/fisiología , Núcleo Coclear/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Análisis por Conglomerados , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Endogámicos ICR , Fibras Nerviosas/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Receptores AMPA/fisiología
18.
J Comp Neurol ; 510(3): 297-308, 2008 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-18634002

RESUMEN

Mutations in the gene that encodes espins can cause deafness and vestibular disorders; mice that are homozygous for the autosomal recessive jerker mutation in the espin gene never hear. Extracellular injections of biocytin into the anteroventral cochlear nucleus (AVCN) revealed that although the cochlear nuclei are smaller in je/je mice, the topography in its innervation resembles that in wild-type mice. Auditory nerve fibers innervate narrow, topographically organized, "isofrequency" bands in deaf animals over the ages examined, P18-P70. The projection of tuberculoventral cells was topographic in je/je as in wild-type mice. Terminals of auditory nerve fibers in the multipolar cell area included both large and small endings, whereas in the octopus cell area they were exclusively small boutons in je/je as in wild-type mice, but end bulbs near the nerve root of je/je animals were smaller than in hearing animals. In whole-cell recordings from targets of auditory nerve fibers, octopus and T stellate cells, miniature excitatory postsynaptic currents (mEPSCs) had similar shapes as in +/+, indicating that the properties of AMPA receptors were not affected by the mutation. In je/je animals the frequency of spontaneous mEPSCs was elevated, and synaptic depression in responses to trains of shocks delivered at between 100 and 333 Hz was greater than in wild-type mice, indicating that the probability of neurotransmitter release was increased. The frequency of spontaneous mEPSCs and extent of synaptic depression were greater in octopus than in T stellate cells, in both wild-type and in je/je mice.


Asunto(s)
Vías Auditivas/anatomía & histología , Núcleo Coclear , Sordera/metabolismo , Sordera/patología , Ratones Endogámicos , Sinapsis , Animales , Vías Auditivas/metabolismo , Nervio Coclear/anatomía & histología , Nervio Coclear/metabolismo , Núcleo Coclear/anatomía & histología , Núcleo Coclear/metabolismo , Sordera/genética , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Técnicas de Placa-Clamp , Sinapsis/metabolismo , Sinapsis/ultraestructura
19.
J Neurophysiol ; 97(6): 3961-75, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17428908

RESUMEN

Bushy cells in the ventral cochlear nucleus convey firing of auditory nerve fibers to neurons in the superior olivary complex that compare the timing and intensity of sounds at the two ears and enable animals to localize sound sources in the horizontal plane. Three voltage-sensitive conductances allow bushy cells to convey acoustic information with submillisecond temporal precision. All bushy cells have a low-voltage-activated, alpha-dendrotoxin (alpha-DTX)-sensitive K(+) conductance (g(KL)) that was activated by depolarization past -70 mV, was half-activated at -39.0 +/- 1.7 (SE) mV, and inactivated approximately 60% over 5 s. Maximal g(KL) varied between 40 and 150 nS (mean: 80.8 +/- 16.7 nS). An alpha-DTX-insensitive, tetraethylammonium (TEA)-sensitive, K(+) conductance (g(KH)) was activated at voltages positive to -40 mV, was half-activated at -18.1 +/- 3.8 mV, and inactivated by 90% over 5 s. Maximal g(KH) varied between 35 and 80 nS (mean: 58.2 +/- 6.5 nS). A ZD7288-sensitive, mixed cation conductance (g(h)) was activated by hyperpolarization greater than -60 mV and half-activated at -83.1 +/- 1.1 mV. Maximum g(h) ranged between 14.5 and 56.6 nS (mean: 30.0 +/- 5.5 nS). 8-Br-cAMP shifted the voltage sensitivity of g(h) positively. Changes in temperature stably altered the steady-state magnitude of I(h). Both g(KL) and g(KH) contribute to repolarizing action potentials and to sharpening synaptic potentials. Those cells with the largest g(h) and the largest g(KL) fired least at the onset of a depolarization, required the fastest depolarizations to fire, and tended to be located nearest the nerve root.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/citología , Conductividad Eléctrica , Neuronas/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Venenos Elapídicos/farmacología , Estimulación Eléctrica/métodos , Técnicas In Vitro , Ratones , Ratones Endogámicos ICR , Neuronas/clasificación , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Pirimidinas/farmacología , Temperatura , Tetraetilamonio/farmacología
20.
J Neurophysiol ; 94(1): 821-32, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15800074

RESUMEN

Temperature is an important physiological variable the influence of which on macroscopic electrophysiological measurements in slices is not well documented. We show that each of three voltage-sensitive conductances of octopus cells of the mammalian ventral cochlear nucleus (VCN) is affected differently by changes in temperature. As expected, the kinetics of the currents were faster at higher than at lower temperature. Where they could be measured, time constants of activation, deactivation, and inactivation had Q10 values between 1.8 and 4.6. The magnitude of the peak conductances was differentially affected by temperature. While the peak magnitude of the high-voltage-activated K+ conductance, g(KH), was unaffected by changes in temperature, the peak of the low-voltage-activated K+ conductance, g(KL), was reduced by half when the temperature was lowered from 33 to 23 degrees C (Q10 = 2). Changing the temperature changed the kinetics and the magnitude of the hyperpolarization-activated mixed cation conductance, g(h), but the changes in magnitude were transient. The voltage sensitivity of the three conductances was unaffected by temperature. The action of temperature on these conductances is reflected in the resting potentials and in the shapes of action potentials.


Asunto(s)
Núcleo Coclear/citología , Umbral Diferencial/fisiología , Conductividad Eléctrica , Neuronas/fisiología , Temperatura , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Animales Recién Nacidos , Umbral Diferencial/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Venenos Elapídicos/farmacología , Estimulación Eléctrica/métodos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Potasio/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...